Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

R. Sankaranarayanan,^a M. Yogavel,^b D. Velmurugan,^b* K. Sekar,^c P. C. Srinivasan,^d S. Shanmuga Sundara Raj^e and Hoong-Kun Fun^e

 ^aMolecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,
^bDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^cBioinformatics Centre, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India, ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^eX-ray Crystallography Unit,

Correspondence e-mail: d_velu@yahoo.com

School of Physics, Universiti Sains Malaysia,

11800 USM, Penang, Malaysia

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.120 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

1,2-Bis[1-phenylsulfonyl-3-(phenylthio)indol-2-yl]ethene

The title compound, $C_{42}H_{30}N_2O_4S_4$, crystallizes in the space group $P\overline{1}$ with half a molecule in the asymmetric unit and the other half generated by an inversion centre. The indole moiety is planar within ± 0.043 (1) Å. The dihedral angle between the indole system and the thiophenyl ring is 83.4 (1)°. The S atom of the sulfonyl substituent has a distorted tetrahedral geometry. The molecular structure is stabilized by $C-H\cdots O$ and $C-H\cdots S$ interactions and the packing of the molecules in the solid state is stabilized by $C-H\cdots O$, $C-H\cdots \pi$ and $\pi-\pi$ intermolecular interactions.

Comment

The indole ring system is present in a number of natural products, many of which are found to possess antibacterial (Okabe & Adachi, 1998), antitumour (Schollmeyer *et al.*, 1995), antidepressant (Grinev *et al.*, 1984), antimicrobial (El-Sayed *et al.*, 1986; Gadaginamath & Patil, 1999) and antiinflammatory (Rodriguez *et al.*, 1985) activities. Phenylsulfones show fungicidal activity comparable to or better than commercial fungicides (Wolf, 1999). The interaction of phenylsulfonyl indole with the calf-thymus DNA has also been studied by spectroscopic methods (Sivaraman *et al.*, 1996). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran *et al.*, 1999). The structure determination of the title compound, (I), was undertaken as part of our studies on indole derivatives.

The asymmetric unit of (I) contains one-half molecule with the other half generated by a centre of inversion; the centre of inversion lies at the midpoint of the C21–C21ⁱ bond [symmetry code: (i) 1 - x, 1 - y, -z]. The bond distance C21–C21ⁱ of 1.344 (3) Å confirms its double-bond character. The dihedral angle between the fused benzene and pyrrole rings is 3.9 (1)°, and atoms S1, S2 and C21 deviate by -0.702 (1), 0.009 (1) and 0.223 (2) Å, respectively, from the mean plane of the indole moiety. The sulfonyl phenyl ring (*A*) and thiophenyl ring (*B*) make dihedral angles of 70.1 (1) and 83.4 (1)°, respectively, with the indole moiety; rings *A* and *B* are inclined at an angle of 80.1 (1)°. The torsion angle O2– S1–N1–C1 of 169.6 (1)° and O2–S1–C9–C10 of Received 9 December 2002 Accepted 17 December 2002 Online 24 December 2002

Figure 1

The molecular structure of (I), showing 35% probability displacement ellipsoids and the atom-numbering scheme.

-43.3 (2)° describe the conformation of the phenylsulfonyl group with respect to the indole system.

Atom S1 has a distorted tetrahedral geometry with the $[120.04 (8)^{\circ}]$ and N1-S1-C9 angles 01 - S1 - O2 $[102.53 (7)^{\circ}]$ deviating significantly from the regular tetrahedral value. The sum of the angles around atom N1 $[351.4 (1)^{\circ}]$ and the deviation of atom N1 by 0.257 (1) Å from the plane passing through atoms C1, C4 and S1 indicate slight pyramidalization of that atom. The bond angle C2-S2-C15 $[102.69 (7)^{\circ}]$ is reduced from 120° . The relatively large values of the C-N distances in the indole moiety [N1-C4 =1.420(2) Å and N1-C1 = 1.434(2) Å] are due to the electron-withdrawing character of the phenylsulfonyl group. Similar features have also been observed for 1,2-bis(1phenylsulfonyl-3-phenylthioindol-2-yl)ethane (SethuSankar et al., 2002).

The orientation of the indole substituent is influenced by the weak C8-H8...O2 interaction, while the orientation of the sulfonylphenyl ring is conditioned by the weak C14-H14...O1 interaction. The torsion angles O2-S1-C9-C14, N1-S1-C9-C14, O1-S1-N1-C4 and S1-N1-C4-C8 (Table 1) define these orientations quantitatively. The molecular structure is stabilized by $C-H\cdots O$ and $C-H\cdots S$ interactions (Table 2). In the crystal, the indole moieties of the molecules at (x, y, z) and (1 - x, 2 - y, -z) are stacked, such that the centroids of the pyrrole and benzene rings are separated by 3.685 (1) Å. Also, ring A of the inversion-related molecules (symmetry code: -x, 1 - y, 1 - z) are stacked with their centroids separated by 3.740 (1) Å. Apart from these weak π - π interactions, the packing of the molecules in the solid state is also stabilized by $C-H\cdots O$ and $C-H\cdots \pi$ intermolecular interactions.

Experimental

To a solution of *n*-butyllithium (15% solution in *n*-hexane) (0.9 ml, 2 mmol) in tetrahydrofuran (5 ml) at 273 K under nitrogen was added diethyl 1-benzenesulfonyl-3-phenylthioindol-2-ylmethyl phosphonate (1 g, 2 mmol) in the same solvent (40 ml), and the resulting solution stirred for 30 min. Dry oxygen was bubbled into the solution at 195 K for 30 min and at room temperature for 1 h with continued stirring. The reaction mixture was poured into ice water (40 ml). A sticky matter was extracted with methylene chloride (2 \times 20 ml) and

the extract was washed with water $(2 \times 10 \text{ ml})$ and dried (MgSO₄). The thick liquid obtained after removal of the solvent was crystallized from methanol, to afford the title compound as a crystalline solid. The melting point of the compound is 467 K.

Crystal data

$C_{42}H_{30}N_2O_4S_4$	Z = 1
$M_r = 754.92$	$D_x = 1.427 \text{ Mg m}^{-3}$
Friclinic, $P\overline{1}$	Mo $K\alpha$ radiation
i = 9.2920(2) Å	Cell parameters from 5090
p = 9.5524 (3) Å	reflections
z = 11.3921 (3) Å	$\theta = 2.3 - 28.3^{\circ}$
$\alpha = 67.379 \ (1)^{\circ}$	$\mu = 0.32 \text{ mm}^{-1}$
$3 = 72.821 \ (1)^{\circ}$	T = 293 (2) K
$\nu = 74.589 \ (1)^{\circ}$	Block, colourless
$V = 878.37 (4) \text{ Å}^3$	$0.46 \times 0.40 \times 0.32 \text{ mm}$

3499 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.023\\ \theta_{\rm max} &= 28.3^\circ \end{aligned}$

 $h=-10\rightarrow 12$

 $k = -12 \rightarrow 12$

 $l = -15 \rightarrow 14$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans Absorption correction: none 6040 measured reflections 4138 independent reflections

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0767P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.040 & w \mbox{ere } P = (F_o^2 + 2F_c^2)/3 \\ S = 1.06 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 4138 \mbox{ reflections } & \Delta\rho_{\rm max} = 0.32 \mbox{ e } {\rm \AA}^{-3} \\ 235 \mbox{ parameters constrained } \\ \end{array}$

Table 1

Selected geometric parameters (Å, °).

S1-O1	1.4244 (12)	S2-C15	1.7839 (15)
S1-O2	1.4268 (12)	N1-C4	1.4204 (18)
S1-N1	1.6943 (13)	N1-C1	1.4343 (16)
S1-C9	1.7635 (17)	C1-C21	1.4578 (18)
S2-C2	1.7502 (15)	C21-C21 ⁱ	1.344 (3)
01 - 81 - 02	120.04 (8)	$C_{2} = S_{2} = C_{15}$	102.69 (7)
01 - 81 - 81	107.77 (7)	C4 - N1 - C1	108.05 (12)
O2-S1-N1	106.17 (7)	C4-N1-S1	122.14 (10)
O1-S1-C9	109.31 (7)	C1-N1-S1	121.22 (10)
O2-S1-C9	109.55 (8)	C2-C1-N1	107.87 (12)
N1-S1-C9	102.53 (7)		
O1-S1-N1-C4	155.46 (11)	N1-S1-C9-C14	-109.72 (14)
O2-S1-N1-C1	169.62 (11)	O2-S1-C9-C10	-43.28(15)
C15-S2-C2-C1	-84.02 (14)	C2-S2-C15-C20	-3.92(15)
S1-N1-C4-C8	-35.5 (2)	C2-C1-C21-C21 ⁱ	23.6 (3)
O2-S1-C9-C14	137.84 (14)	$N1 - C1 - C21 - C21^{i}$	-163.16 (18)

Symmetry code: (i) 1 - x, 1 - y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).

Cg(B) is the centroid of ring B.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C8-H8···O2	0.93	2.33	2.869 (2)	117
$C14-H14\cdots O1$	0.93	2.55	2.924 (2)	105
C21-H21···O1	0.93	2.37	2.984 (2)	123
$C21 - H21 \cdot \cdot \cdot S2^i$	0.93	2.67	3.328 (2)	129
$C17 - H17 \cdot \cdot \cdot O2^{ii}$	0.93	2.59	3.242 (2)	128
$C6-H6\cdots Cg(B^{iii})$	0.93	2.99	3.842 (2)	153

Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 + x, y - 1, z; (iii) x, 1 + y, z.

All the H atoms were fixed geometrically and allowed to ride on their carrier atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997) and *PLATON* (Spek, 1990); software used to prepare material for publication: *SHELXL*97 and *PARST* (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST), India, is gratefully acknowledged.

References

- El-Sayed, K., Barnhart, D. M., Ammon, H. L. & Wassel, G. M. (1986). Acta Cryst. C42, 1383–1385.
- Gadaginamath, G. S. & Patil, S. A. (1999). Indian J. Chem. Sect. B, 38, 1070– 1074.

- Grinev, A. N., Shevdov, V. L., Krichevskii, E. S., Romanova, O. B., Altukkhova, L. B., Kurilo, G. N., Andreeva, N. I., Golovina, S. M. & Mashkovskii, M. D. (1984). *Khim. Farm. Zh.* 18, 159–163.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.
- Rajeswaran, W. G., Labroo, R. B. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369–1371.
- Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). *Tetrahedron*, 41, 3813–3823.
- Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.
- SethuSankar, K., Suresh Babu, N., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, 0134–0136.
- Sheldrick, G. M. (1997). *SHELXS*97 and *SHELXL*97. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray instruments Inc., Madison, Wisconsin, USA.
- Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. & Seetharaman, J. (1996). J. Mol. Struct. 385, 123–128.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Wolf, W. M. (1999). Acta Cryst. C55, 469-472.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.